Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37546917

RESUMO

Glioblastoma is the deadliest adult brain cancer. Under the current standard of care almost all patients succumb to the disease and novel treatments are urgently needed. Dopamine receptor antagonists have been shown to target cancer cell plasticity in GBM and repurposing these FDA-approved drugs in combination with radiation improves the efficacy of radiotherapy in glioma models. In cells surviving this combination treatment the mevalonate pathway is upregulated at the transcriptional and functional level. Here we report that glioblastoma treatments that converge in the immediate early response to radiation through activation of the MAPK cascade universally upregulate the mevalonate pathway and increase stemness of GBM cells through activation of the Rho-GTPase Rac-1. Activation of the mevalonate pathway and Rac-1 is inhibited by statins, which leads to improved survival in mouse models of glioblastoma when combined with radiation and drugs that target the glioma stem cell pool and plasticity of glioma cells.

2.
PLoS One ; 18(8): e0290063, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37585446

RESUMO

This study investigates thermomechanical stress in cryopreservation by vitrification of the heart, while exploring the effects of nanowarming-assisted recovery from cryogenic storage. This study expands upon a recently published study, combining experimental investigation and thermal analysis of cryopreservation on a rat heart model. Specifically, this study focuses on scenarios with variable concentrations of silica-coated iron-oxide nanoparticles (sIONPs), while accounting for loading limitations associated with the heart physiology, as well as the properties of cryoprotective agent (CPA) solution and the geometry of the container. Results of this study suggest that variable sIONP concentration based on the heart physiology will elevate mechanical stresses when compared with the mathematically simplified, uniform distribution case. The most dangerous part of rewarming is below glass transition and at the onset of nanowarming past the glass transition temperature on the way for organ recovery from cryogenic storage. Throughout rewarming, regions that rewarm faster, such as the chambers of the heart (higher sIONP concentration), undergo compressive stresses, while the slower rewarming regions, such as the heart myocardium (low sIONP concentration), undergo tension. Being a brittle material, the vitrified organ is expected to fail under tension in lower stresses than in compression. Unfortunately, the location and magnitude of the maximum stress in the investigated cases varied, while general rules were not identified. This investigation demonstrates the need to tailor the thermal protocol of heart cryopreservation on a case-by-case basis, since the location, orientation, magnitude, and instant at which the maximum mechanical stress is found cannot be predicted a priori. While thermomechanical stress poses a significant risk to organ integrity, careful design of the thermal protocol can be instrumental in reducing the likelihood of structural damage, while taking full advantage of the benefits of nanowarming.


Assuntos
Criopreservação , Coração , Vitrificação , Animais , Humanos , Ratos , Criopreservação/métodos , Estresse Mecânico , Temperatura , Coração/fisiologia , Modelos Biológicos
3.
J Heat Transfer ; 144(3): 031202, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35833152

RESUMO

This study explores thermal design aspects of nanowarming-assisted recovery of the heart from indefinite cryogenic storage, where nanowarming is the volumetric heating effect of ferromagnetic nanoparticles excited by a radio frequency electromagnet field. This study uses computational means while focusing on the human heart and the rat heart models. The underlying nanoparticle loading characteristics are adapted from a recent, proof-of-concept experimental study. While uniformly distributed nanoparticles can lead to uniform rewarming, and thereby minimize adverse effects associated with ice crystallization and thermomechanical stress, the combined effects of heart anatomy and nanoparticle loading limitations present practical challenges which this study comes to address. Results of this study demonstrate that under such combined effects, nonuniform nanoparticles warming may lead to a subcritical rewarming rate in some parts of the domain, excessive heating in others, and increased exposure potential to cryoprotective agents (CPAs) toxicity. Nonetheless, the results of this study also demonstrate that computerized planning of the cryopreservation protocol and container design can help mitigate the associated adverse effects, with examples relating to adjusting the CPA and/or nanoparticle concentration, and selecting heart container geometry, and size. In conclusion, nanowarming may provide superior conditions for organ recovery from cryogenic storage under carefully selected conditions, which comes with an elevated complexity of protocol planning and optimization.

4.
Adv Mater Technol ; 7(3)2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35668819

RESUMO

To extend the preservation of donor hearts beyond the current 4-6 h, this paper explores heart cryopreservation by vitrification-cryogenic storage in a glass-like state. While organ vitrification is made possible by using cryoprotective agents (CPA) that inhibit ice during cooling, failure occurs during convective rewarming due to slow and non-uniform rewarming which causes ice crystallization and/or cracking. Here an alternative, "nanowarming", which uses silica-coated iron oxide nanoparticles (sIONPs) perfusion loaded through the vasculature is explored, that allows a radiofrequency coil to rewarm the organ quickly and uniformly to avoid convective failures. Nanowarming has been applied to cells and tissues, and a proof of principle study suggests it is possible in the heart, but proper physical and biological characterization especially in organs is still lacking. Here, using a rat heart model, controlled machine perfusion loading and unloading of CPA and sIONPs, cooling to a vitrified state, and fast and uniform nanowarming without crystallization or cracking is demonstrated. Further, nanowarmed hearts maintain histologic appearance and endothelial integrity superior to convective rewarming and indistinguishable from CPA load/unload control hearts while showing some promising organ-level (electrical) functional activity. This work demonstrates physically successful heart vitrification and nanowarming and that biological outcomes can be expected to improve by reducing or eliminating CPA toxicity during loading and unloading.

5.
Cryobiology ; 103: 70-80, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34543621

RESUMO

Circumventing ice formation is critical to successful cryopreservation by vitrification of large organs. While ice formation during the cooling part of the cryogenic protocol is dictated by the evolving thermal conditions, ice formation during the rewarming part of the cryogenic protocol is also dependent on the history of cooling and storage conditions. Furthermore, while the exothermic effect of ice crystallization during cooling tends to adversely slow down the desired high cooling rates to ensure ice-free preservation, the same effect under some conditions tends to assist acceleration of rewarming during recovery of the specimen from cryogenic storage when limited crystallization does occur. The current study proposes a computational framework to study the thermal effects of crystallization during recovery from cryogenic storage, using a semi-empirical approach to account for the relationship between latent heat effects and the rewarming rate. This study adds another layer of computational capabilities to a recent study investigating similar effects during cooling. Results of this study demonstrate that the thermal effects of crystallization on the local cooling and rewarming rates cannot be neglected. It further explains how crystallization during rewarming helps in increasing the rewarming rate and, thereby, affects rewarming-phase crystallization. Counterintuitively, this study suggests that the fastest possible rewarming rate at the outer surface of the domain in an inwards rewarming problem is not always advantageous, while the proposed computational tool is essential to find an intermediate optimal rate.


Assuntos
Crioprotetores , Vitrificação , Criopreservação/métodos , Cristalização , Reaquecimento
6.
Cryobiology ; 91: 128-136, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31526802

RESUMO

This study aims at the thermal analysis of marginal conditions leading to cryopreservation by vitrification, which appears to be the only alternative for indefinite preservation of large-size tissues and organs. The term "marginal conditions" here refers to cooling rates in close range with the so-called critical cooling rate, above which crystallization is avoided. The analysis of thermal effects associated with partial crystallization during vitrification is associated with the coupled phenomena of heat transfer and kinetics of crystallization. This study takes a practical, semi-empirical approach, where heat transfer is analyzed based on its underlying theoretical principles, while the thermal effects associated with partial crystallization are taken into account by means of empirical correlations. This study presents a computation framework to solve the coupled problem, while presenting a proof-of-concept for DP6 as a representative cryoprotective agent. The thermal effects associated with crystallization at various relevant cooling rates are measured in this study by means of differential scanning calorimetry. Results of this study demonstrate that, due to the thermal effects associated with partial crystallization, the cooling rate at the center of a large organ may lag behind the cooling rate in its surroundings under some scenarios, but may also exceed the surroundings cooling rate in other scenarios, leading to counter-intuitive effects associated with partial crystallization.


Assuntos
Varredura Diferencial de Calorimetria/métodos , Criopreservação/métodos , Crioprotetores/farmacologia , Análise Diferencial Térmica/métodos , Dimetil Sulfóxido/farmacologia , HEPES/farmacologia , Preservação de Órgãos/métodos , Propilenoglicóis/farmacologia , Temperatura Baixa , Crioprotetores/química , Cristalização , Temperatura Alta , Transição de Fase , Vitrificação
7.
Int J Comput Assist Radiol Surg ; 13(4): 541-549, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29396685

RESUMO

PURPOSE: This study aims at the evaluation of a prototype of a computerized trainer for cryosurgery-the controlled destruction of cancer tumors by freezing. The hypothesis in this study is that computer-based cryosurgery training for an optimal cryoprobe layout is essentially a matter of exposure time, rather than trainee background or the specific computer-generated planning target. Key geometric features under considerations are associated with spatial limitations on cryoprobes placement and the match between the resulted thermal field and the unique anatomy of the prostate. METHODS: All experiments in this study were performed on the cryosurgery trainer-a prototype platform for computerized cryosurgery training, which has been presented previously. Among its key features, the cryosurgery trainer displays the prostate shape and its contours and provides a distance measurement tool on demand, in order to address spatial constraints during ultrasound imaging guidance. Another unique feature of the cryosurgery trainer is an output movie, displaying the simulated thermal field at the end of the cryoprocedure. RESULTS: The current study was performed on graduate engineering students having no formal background in medicine, and the results were benchmarked against data obtained on surgical residents having no experience with cryosurgery. Despite fundamental differences in background and experience, neither group displayed superior performance when it comes to cryoprobe layout planning. CONCLUSIONS: This study demonstrates that computer-based training of an optimal cryoprobe layout is feasible. This study demonstrates that the training quality is essentially related to the training exposure time, rather than to a specific planning strategy from those investigated.


Assuntos
Simulação por Computador , Criocirurgia/educação , Engenharia/educação , Próstata/diagnóstico por imagem , Cirurgia Assistida por Computador/educação , Ultrassonografia/métodos , Urologia/educação , Humanos , Internato e Residência , Masculino , Microcirurgia/educação , Modelos Teóricos , Próstata/cirurgia
8.
Proc SPIE Int Soc Opt Eng ; 100662017 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-28717259

RESUMO

This paper focuses on the evaluation of a prototype for a computer-based tutoring system for prostate cryosurgery, while reviewing its key building blocks and their benchmark performance. The tutoring system lists geometrical constraints of cryoprobe placement, displays a rendered shape of the prostate, simulates cryoprobe insertion, enables distance measurements, simulates the corresponding thermal history, and evaluates the mismatch between the target region shape and a pre-selected planning isotherm. The quality of trainee planning is measured in comparison with a computer-generated plan, created for each case study by a previously developed planning algorithm, known as bubble-packing. While the tutoring level in this study aims only at geometrical constraints on cryoprobe placement and the resulting thermal history, it creates a unique opportunity to gain insight into the process outside of the operation room. System validation of the tutor has been performed by collecting training data from surgical residents, having no prior experience or advanced knowledge of cryotherapy. Furthermore, the system has been evaluated by graduate engineering students having no formal education in medicine. In terms of match between a planning isotherm and the target region shape, results demonstrate medical residents' performance improved from 4.4% in a pretest to 37.8% in a posttest over a course of 50 minutes of training (within 10% margins from a computer-optimized plan). Comparing those results with the performance of engineering students indicates similar results, suggesting that planning of the cryoprobe layout essentially revolves around geometric considerations.

9.
Technol Cancer Res Treat ; 16(6): 1272-1283, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28731368

RESUMO

The current study aims to explore possible relationships between various prostate shapes and the difficulty in creating a computer-based plan for cryosurgery. This research effort is a part of an ongoing study to develop computational means in order to improve cryosurgery training and education. This study uses a computerized planner-a key building block of a recently developed prototype for cryosurgery training. The quality of planning is measured by the overall defect volume, a proprietary concept which refers to undercooled areas internal to the target region and overcooled areas external to it. Results of this study numerically confirm that the overall defect volume decreases with an increasing number of cryoprobes, regardless of the geometry of the prostate. However, the number of cryoprobes required to achieve the smallest possible defect may be unrealistically high (<30). Results of this study also demonstrate that the optimal cryoprobe layout is associated with a smaller defect for symmetric prostate geometries and, independently, for prostate models that better resemble a sphere. Furthermore, a smaller defect is typically achieved when the urethra passes through the center of the prostate model. This study proposes to create a cryoprobe convex hull for the purpose of initial planning, which is a subdomain similar in shape to the prostate but at a reduced size. Parametric studies indicate that a cryoprobe convex hull contracted by 7 to 9 mm in all directions from the prostate capsule serves as a quasi-optimal initial condition for planning, that is, a preselected number of cryoprobes placed in the cryoprobe convex hull yields favorable results for optimization. The cryoprobe convex hull could accelerate computer-based planning, while also being adopted as a concept for traditional cryosurgery training, when computerized means are absent.

10.
Cell Biol Int ; 34(5): 441-6, 2010 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-20100169

RESUMO

The pathways by which chondrocytes of articular cartilage sense their mechanical environment are unclear. Compelling structural evidence suggests that chondrocyte primary cilia are mechanosensory organelles. This study used a 3D agarose culture model to examine the effect of compressive strain on chondrocyte cilia. Chondrocyte/agarose constructs were subjected to cyclic compression (0-15%; 1 Hz) for 0.5-48 h. Additional constructs were compressed for 48 h and allowed to recover for 72 h in uncompressed free-swelling conditions. Incidence and length of cilia labelled with anti-acetylated alpha-tubulin were examined using confocal microscopy. In free-swelling chondrocytes, these parameters increased progressively, but showed a significant decrease following 24 or 48 h compression. A 72 h recovery partially reversed this effect. The reduced cilia incidence and length were not due to increased cell division. We therefore propose that control of primary cilia length is an adaptive signalling mechanism in response to varying levels and duration of mechanical loads during joint activity.


Assuntos
Condrócitos , Cílios , Mecanotransdução Celular/fisiologia , Estresse Mecânico , Animais , Bovinos , Proliferação de Células , Células Cultivadas , Condrócitos/citologia , Condrócitos/fisiologia , Cílios/metabolismo , Cílios/ultraestrutura , Masculino
11.
J Gen Physiol ; 134(4): 339-50, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19752188

RESUMO

Trabeculae carneae are the smallest naturally arising collections of linearly arranged myocytes in the heart. They are the preparation of choice for studies of function of intact myocardium in vitro. In vivo, trabeculae are unique in receiving oxygen from two independent sources: the coronary circulation and the surrounding ventricular blood. Because oxygen partial pressure (PO(2)) in the coronary arterioles is identical in specimens from both ventricles, whereas that of ventricular blood is 2.5-fold higher in the left ventricle than in the right ventricle, trabeculae represent a "natural laboratory" in which to examine the influence of "extravascular" PO(2) on the extent of capillarization of myocardial tissue. We exploit this advantage to test four hypotheses. (1) In trabeculae from either ventricle, a peripheral annulus of cells is devoid of capillaries. (2) Hence, sufficiently small trabeculae from either ventricle are totally devoid of capillaries. (3) The capillary-to-myocyte ratios in specimens from either ventricle are identical to those of their respective walls. (4) Capillary-to-myocyte ratios are comparable in specimens from either ventricle, reflecting equivalent energy demands in vivo, driven by identical contractile frequencies and comparable wall stresses. We applied confocal fluorescent imaging to trabeculae in cross section, subsequently using semi-automated segmentation techniques to distinguish capillaries from myocytes. We quantified the capillary-to-myocyte ratios of trabeculae from both ventricles and compared them to those determined for the ventricular free walls and septum. Quantitative interpretation was furthered by mathematical modeling, using both the classical solution to the diffusion equation for elliptical cross sections, and a novel approach applicable to cross sections of arbitrary shape containing arbitrary disposition of capillaries and non-respiring collagen cords.


Assuntos
Ventrículos do Coração/anatomia & histologia , Oxigênio/metabolismo , Animais , Ventrículos do Coração/ultraestrutura , Mitocôndrias Cardíacas/fisiologia , Mitocôndrias Cardíacas/ultraestrutura , Células Musculares/metabolismo , Contração Miocárdica , Ratos , Ratos Wistar
12.
Microsc Res Tech ; 70(10): 886-94, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17661361

RESUMO

Three-dimensional reconstruction of large tissue volumes using histological thin sections poses difficulties because of registration of sections, section distortion, and the possibility of incomplete data set collection due to section loss. We have constructed an integrated surface imaging system that successfully addresses these problems. Embedded tissue is mounted on a high precision XYZ stage and the upper surface is iteratively: (i) stained to provide an effective optical section, (ii) imaged using a digital camera, and (iii) removed with an ultramiller. This approach provides for the reconstruction of high-quality 3D images by inherently preserving image registration, eliminates section distortion, thus removing the need for complex realignment and correction, and also ensures full capture of all image planes. The system has the capacity to acquire images of tissue structure with voxel sizes from 0.5 to 50 mum over dimensions ranging from micrometers to tens of millimeters. The ultramiller enables large samples to be imaged by reliably removing tissue over their full extent. The ability to visualize key features of 3D tissue structure across such a range of scale and resolution will facilitate the development of a greater understanding of the relationship between structure and function. This understanding is essential for better analyses of the structural changes associated with different disease states, and the development of structure-based computer models of biological function.


Assuntos
Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/instrumentação , Imageamento Tridimensional/métodos , Microscopia/métodos , Miocárdio/citologia , Microscopia/instrumentação , Microtomia/métodos , Inclusão do Tecido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...